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Abstract—This paper introduces compositional time Petri net
(CTPN) models. A CTPN is a modularized time Petri net (TPN),
which is composed of components and connectors. The paper also
proposes a set of component-level reduction rules for TPNs. Each
of these reduction rules transforms a TPN component to a very
simple one while maintaining the net’s external observable timing
properties. Consequently, the proposed method works at a coarse
level rather than at an individual transition level. Therefore, one
requires significantly fewer applications to reduce the size of the
TPN under analysis than those existing ones for TPNs. The use and
benefits of CTPNs and reduction rules are illustrated by modeling
and analyzing the response time of a command and control system
to its external arriving messages.

Index Terms—Compositional modeling, formal verification, re-
duction, system analysis, time Petri nets.

I. INTRODUCTION

PETRI NETS [6], [7] have been used to model various
discrete event systems [17], [20]. Because of their ability

to model asynchronous events, parallelism, contention, and
synchronization, they have gained more and more applications.
Basic Petri nets lack a temporal description and, therefore, fail
to represent any timing constraints for time-dependent systems.
Introduction of time into a transition, place, or arc increased
both the modeling power and the complexity of the net analysis.
Several extended models of Petri nets were proposed to deal
with the timing issues [12]. These models include timed Petri
nets [19], stochastic timed Petri nets [4], and time Petri nets
(TPNs) [5]. Among these models, TPNs are most widely used
for real-time system specification and verification [3], [13],
[14], [10]. In TPNs, event synchronization is represented in
terms of a set of pre- and post-conditions associated with each
individual action of the modeled system, and timing constraints
are expressed in terms of minimum and maximum amount of
time elapsed between the enabling and the execution of each
action. This allows a compact representation of the state space
and an explicit modeling of concurrency and parallelism.

A fundamental and most widely applied method for analyzing
TPNs, as for many other formal models, is reachability analysis
[2], [1], [15]. It permits the automatic translation of behavioral

Manuscript received October 29, 1999; revised May 28, 2000. This
work was supported in part by the Army Research Office under Grant
DAAG55-98-1-0428 and by the National Science Foundation under Grant
HDR-9707076. This paper was recommended by Associate Editor Y. Narahari.

J. Wang is with the School of Computer Science, Florida International Uni-
versity, Miami, FL 33199 USA.

Y. Deng was with the School of Computer Science, Florida International Uni-
versity, Miami, FL 33199 USA. He is now with the Department of Computer
Science, University of Texas at Dallas, Richardson, TX 75083 USA.

M. Zhou is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07012 USA (e-mail:
zhou@njit.edu).

Publisher Item Identifier S 1083-4419(00)06716-9.

specification models into a state transition graph made up of a
set of states, a set of actions, and a succession relation associ-
ating states through actions [3]. This representation makes ex-
plicit such properties as deadlock and reachability [18], and al-
lows the automatic verification of ordering relationships among
task execution times [10].

However, for a complex or even midsize TPN, it is difficult to
enumerate its reachable states, which is commonly referred to as
a state-explosion problem. Sloanet al.developed several reduc-
tion rules for TPN analysis that work at an individual transition
level [8]. These reduction rules help to reduce the complexity of
TPN analysis to some extent. However, it is not a trivial work to
automatically search the preconditions of applying these reduc-
tion rules for a complex TPN.

Modern complex time-dependent systems are often of
module constructs. A modular system is a composition of
components that interact with each other through connectors.
In this paper, we introduce the concept of compositional time
Petri nets (CTPNs). A CTPN is a modularized TPN, which is
composed of components and connectors. A component is a
coarse grained subnet of a TPN, and a connector is a simple
TPN to describe the interaction among components. We pro-
pose a set of component-level reduction rules for TPNs. Each
of the reduction rules transforms a TPN component to a small
one while maintaining the net’s external observable timing
properties. The application of these rules will dramatically
reduce the size of a CTPN. Meanwhile, because these rules
work at a much coarser level than those developed by Sloanet
al., fewer applications of our rules are needed to reduce the size
of the TPN under consideration.

Many research achievements have been reported in reduction
techniques for general Petri nets. In particular, a stepwise re-
finement and abstraction method [9], [11] is developed for Petri
nets, where the abstraction (reduction) technique can be used
as a “divide-and-conquer” approach for the analysis of liveness,
boundness, resource requirements, etc., for complex Petri nets.
Our reduction rules are similar in spirit to their work [9], [11], in
that we reduce the TPN components to the same form of simple
Petri nets. The difference is that we reduce TPN components in
terms of equivalent external observable timing properties. The
analysis of TPN is clearly more challenging and important since
it can model and reveal more characteristics of a discrete event
system that evolves over time.

The rest of the paper is arranged as follows: Section II intro-
duces the concept of CTPN models. Section III proposes a set
of component-level reduction rules. Section IV illustrates the
use and benefits of CTPNs and reduction rules by modeling and
analyzing the response time of a command and control system
to its external arriving message. Section V makes concluding
remarks.

1083–4419/00$10.00 © 2000 IEEE
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II. COMPOSITIONAL TIME PETRI NETS

CTPNs augment the basic Petri net model with timing con-
straints of TPNs and modular constructs. They follow the same
transition firing rules as TPNs [5].

A. Petri Nets

A Petri net is a bipartite directed graph in which the nodes
are calledplaces and transitions. A Petri net is a 4-tuple

, where is a set of places ; is a set of
transitions , , ; and is the
pre- (post-) incidence function representing the input (output)
arcs .

The pre- and post-sets of a transition are defined as
and , where

and are the multiplicities of arcs and , re-
spectively. The pre- and post-sets of place are defined as

and , respectively.
A place may havetokens. A function is called a

marking, which is usually represented as a column vector where
each element is the number of tokens contained in the corre-
sponding place. A marking represents a (distributed) state of
the modeled system. AmarkedPetri net is a
Petri net with an initial marking . A transition is
enabled in iff for any . A transi-
tion enabled in can fire and, thus, yield a new marking

for any .

B. Time Petri Nets

Time Petri nets (TPNs) were first introduced by Merlin and
Farber [5]. In a TPN, two time values are defined for each tran-
sition EFT , andLFT , whereEFT is the minimum
time the transition must wait after it is enabled and before it is
fired, i.e., itsearliest firing time, andLFT the maximum time
the transition can wait before firing if it is still enabled, i.e., its
latest firing time. TimesEFT andLFT are relative to the
moment at which is enabled. Assume thathas been enabled at
global time . Even though it is continuously enabled, it cannot
fire before EFT , and must fire before or at time
LFT , unless it is disabled before firing due to another tran-
sition’s firing. Formally, a TPN is a 6-tuple SI ,
where is a marked Petri net andSI is a mapping
calledstatic interval, SI , where is
the set of nonnegative rational numbers.

A state of a TPN is a pair , where is a
marking and a firing interval set which is a vector of possible
firing times. The number of entries in this vector is given in the
number of the transitions enabled by marking.

Suppose that transition fires at global time at state
and results in state firing at global

time at state and results in state
and firing at global time at state and results in state

. Then we get afiring schedule
. In general, for TPN with schedule

, we denote by the state reached by starting in’s ini-
tial state and firing each transition inat its associated time, and

the global time when state is reached, which is

Fig. 1. Illustration of an example CTPN structure.

the global firing time of the last transition in. We also denote
by the set of all firing schedules of .

C. Compositional Time Petri Nets

The building blocks of a CTPN arecomponents[14]. A com-
ponent is a coarse grained subnet of a TPN. A CTPN model
consists of two basic elements:componentsand connectors.
Connectors are also represented by TPN models. The compo-
nent TPN models describe the real-time behavior and commu-
nication interface of their corresponding components. The con-
nectors specify how the components interact with each other.
Both are used to form a composition model. All connectors are
defined using only communication interfaces, which gives us
the flexibility to change the design of individual components
without a need to void the analysis of the entire system.

Fig. 1 shows an example structure of CTPN models. It has
three components— , and . Each component model
has two parts: 1)communication ports(denoted graphically by
half circles), includinginput ports(e.g.,port8) andoutput ports
(e.g.,port9) and 2) a TPN that describes the time-dependent
operational behavior of the component, i.e., it defines the se-
mantics associated with the ports. The communication between
a component and its environment is solely through the ports.
A connector represents a channel of interaction between com-
ponents. It is modeled by a simple TPN and defines the direc-
tion of message flow and delay in the channel. For example,
components and have a request–reply relationship that
is modeled by a bidirectional channel. The communication is
asynchronous message passing.

Definition 1: Let SI be the time Petri
net model of a component, and

PIN

POUT

PORT PIN POUT

Then, PIN is called aninput port, POUT is called an
output port, and PORT is called aport of the component.

III. COMPONENT-LEVEL REDUCTION RULES

In this section, we present a set of component-level reduc-
tion rules for TPNs. These rules preserve the external observ-
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able timing properties of the components to be reduced, and are
fundamentals to the analysis of CTPN models.

Following [8], we use for the time Petri net obtained
by restricting the underlying graph to. This notation is also
used for net states and firing schedules. For time Petri net

SI and , we define as the set
of all schedules of with all pairs containing a transition not
from deleted. , where is
the set of transitions in but not in . refers
to what is left on net when one removes transitionsand
together with all arcs incident on either or . If is a
state of net , then is the same state with place

deleted from the marking and transition’s firing interval, if
any, deleted from vector .

Definition 2: Assume that a rule transforms a time Petri
net to . Let be the set of transitions of which
are left completely unmodified by this transformation. We
say that the transformation istiming property preservingif

.
Based on this definition, when we reduce a component in a

CTPN into a simple TPN using a timing property preserving
transformation rule, the timing property, in terms of transition
firing schedules, for the rest of the CTPN remains unchanged.

In the rest of this section, we will present several reduction
rules that fuse together two or more transitions. We will give the
proof that the first rule is timing property preserving in complete
detail. In addition, the following interval arithmetic is used. Let

and , with .
Then we define to be the interval . In
the special case where is a point interval, i.e., , and

, we define to be the interval .
The following definition is useful in the proofs of the fol-

lowing theorems.
Definition 3: We say that a port gets markedduring a

schedule if there is a prefix of such that is marked in
the state .

Component-Level Reduction Rule 1:Let be the TPN
model of a system, and be the TPN model of component

in the system, with port and
port . The component has no enabled transition under the

initial marking of . If

1) wheneverport1 receives a token,port2 is guaranteed to
receive a token in the future;

2) port1 cannot receive another token untilport2 has re-
ceived a token

then we can reduce into by replacing with a simple net
composed of two places:port1 andport2, and one transition:,
such that

1) port port port port ,
while port andport remain unchanged;

2) SI SI port port , whereSI port port is the
time delay interval for the token moving fromport1 to
port2 (see Fig. 2).

Theorem 1: The component-level reduction rule 1 is timing
property preserving.

Proof: See the Appendix.

Fig. 2. Illustration of component-level reduction rule 1.

Fig. 3. Illustration of component-level reduction rule 2.

Component-Level Reduction Rule 2:Let be the TPN
model of system , and the TPN model of component
of , with port port port ,
andport port . The component has no enabled transition
under the initial marking of . If

1) whenever bothport1 andport2 receive a token,port3 is
guaranteed to receive a token in the future;

2) at least one ofport1 andport2 cannot receive another
token untilport3 has received a token

then we can reduce into by replacing with a simple
net composed of three places:port1, port2 andport3, and one
transition: , such that

1) port port port port

port port , while port port andport

remain unchanged;
2) SI SI port port port , whereSI port

port port is the time delay interval from two tokens
arriving inport1 andport2 to a token reachingport3 (see
Fig. 3).

Theorem 2: The component-level reduction rule 2 is timing
property preserving.

Proof: Sinceport port port1 and port2 share
the same output transitions, which implies that only when both
port1 andport2 get tokens can some transition in
be enabled. Therefore, we can prove this theorem using the same
method as that used in proving Theorem 1.

Reduction rule 2 can be extended to cases with more than two
input ports.

Component-Level Reduction Rule 3:Let be the TPN
model of a system, and the TPN model of component of

, with port and port port .
The component has no enabled transition under the initial
marking of . If

1) wheneverport1 receives a token, one and only one of
port2 andport3 is guaranteed to receive a token in the
future;

2) port1 cannot receive another token until one ofport2 and
port3 has received a token
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Fig. 4. Illustration of component-level reduction rule 3: The token reaching
port1 will follow either token flow path 1 to reachport2, or token flow path 2
to reachport3.

then we can reduce into by replacing with a simple
net composed of three places:port1, port2 andport3, and two
transition: and , such that

1) port port port

port port port , while
port port andport remain unchanged;

2) SI SI port port , andSI SI port

port (see Fig. 4).
Theorem 3: The component-level reduction rule 3 is timing

property preserving.
Proof Sketch:Let time Petri net be derived from by

applying the component reduction rule 3. The general skeleton
of the proof is the same as the proof of Theorem 1. We need
to prove that and

. We first prove
. We will show that if , then

. Because any such can be expressed
as where , it suffices to show that for any

where .
We break our proof into several cases.

Case 1)Port1 does not get marked during.
Case 2)Port1 gets marked but neitherport2 nor port3 gets

marked during .
From the proof of Theorem 1 we can conclude

in the above two cases.
Case 3)Port1 gets marked once and only once, and either

port2 or port3 gets marked once and only once
during .

Suppose thatport1 gets marked during . Then
it follows from the proof of Theorem 1 that

. If the case is thatport3 gets marked
instead ofport2 during , we symmetrically have the
same conclusion.

Case 4) General case.
Suppose thatport1 gets marked times,port2 gets marked
times, andport3 gets marked times during . It follows

from precondition (2) of this rule that either or
. We have proven the cases in which

, and .
By the recursive use of the proofs for Case 2 and Case 3, we can
prove that for any schedule in which

takes any positive integral value.
In the other direction, we may show

using the method similar to that used in proving
Theorem 1.

Reduction rule 3 can be extended to cases with more than two
output ports.

Fig. 5. Illustration of component-level reduction rule 4. The arrival of a token
at port1 will result in a token reaching bothport2 andport3.

Component-Level Reduction Rule 4:Let be the
TPN model of a system , and be the TPN model
of component of , with port and

port port . The component has no en-
abled transition under the initial marking of. If

1) wheneverport1 receives a token, bothport2 andport3 are
guaranteed to receive a token in the future;

2) port1 cannot receive another token until bothport2 and
port3 have received a token

then we can reduce into by replacing with a simple
net composed of four places:port11, port12, port2 andport3,
and two transitions: and , such that

1) port port port port port

port port port

port , while port and port remain un-
changed;

2) SI SI port port , andSI SI port

port (see Fig. 5).
Theorem 4: The component-level reduction rule 4 is timing

property preserving.
Proof Sketch:Let time Petri net be derived from by

applying the component reduction rule 4. The general skeleton
of the proof is the same as the proof of Theorem 1. We need to
prove both and

. We first prove
. We will show that if , then

. Because any such can be expressed
as where , it suffices to show that for any

where .
We break our proof into several cases:

Case 1)Port1 doesn’t get marked during.
Case 2)Port1 gets marked but neitherport2 nor port3 gets

marked during .
From the proof of Theorem 1 we can conclude

in the above two cases.
Case 3)Port1 gets marked once and only once, and either

port2 or port3 gets marked during.
Suppose thatport2 gets marked during . Then

it follows from the proof of Theorem 1 that
. If the case is thatport3 gets marked

instead ofport2 during , we symmetrically have the
same conclusion.

Case 4)Port1 gets marked once and only once, and both
port2 andport3 get marked during .

Without loss of generality, we assume thatport2
gets marked first and thenport3 gets marked. Let

be the shortest prefix of such thatport1 gets
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Fig. 6. Illustration of component reduction rule 5.

marked during . This implies that
is the shortest prefix of such thatport2

gets marked during , and is the shortest
prefix of such thatport3 gets marked during .
Then we write , where

since we have assumed thatport1 gets marked
only once during .

Let be the time of state
the time of , and the time of

. Then, from preconditions (1) and
(2) of this rule, we know represents the time
delay the message transfer betweenport1 andport3,
i.e., SI port port

SI port port , and
SI port port . SinceSI SI port

port , we have SI

SI , and SI .
Also, it follows from and

port port port that
and is enabled under state .

In Case 3), we already have
; now we have
, and again because

port port port port ,
the state
is followed by . It follows from
that ,
or , or

.
If the case is thatport3 gets marked first and then

port2 gets marked during, we symmetrically have
the same conclusion.

Case 5) General case.
Suppose thatport1 gets marked times,port2 gets marked
times, andport3 gets marked times during . It follows

from precondition (2) of this rule that either or
or . We have proven the cases in which

, and
. By the recursive use of the proofs for Case 2,

Case 3, and Case 4, we can prove that
for any schedule in which takes any positive integral value.

In the other direction, we can show
using the method similar to that used in proving

Theorem 1.
Reduction rule 4 can be extended to cases with more than two

output ports.

Component-Level Reduction Rule 5:Let be the TPN
model of a system , and be the TPN model of compo-
nent of , with port port

port port , andport port . The component has no
enabled transition under the initial marking of. If

1) whenever bothport1 andport2 receive a token, bothport3
and port4 are guaranteed to receive a token simultane-
ously in the future and

2) at least one ofport1 andport2 cannot receive another
token until bothport3 andport4 have received a token

then we can reduce into by replacing with a simple
net composed of four places:port1, port2, port3 andport4, and
one transition: , such that

1) port port port port

port port and port port , while port

port port andport remain unchanged;
2) SI SI port port port port [see Fig. 6].

Theorem 5: The component-level reduction rule 5 is timing
property preserving.

Proof: Sinceport port , port1 andport2 share the
same output transitions, this implies that only when bothport1
andport2 get tokens can some transition in be
enabled. Therefore, we can prove this theorem by using the same
method as that used in Theorem 1.

Reduction rule 5 can be extended to cases with more than two
input ports and more than two output ports.

It should be noted that

1) The component-level reduction rules are purely devel-
oped based on the external observable input–output pat-
terns of components. In other words, no matter how com-
plex the internal structure of a component is, a reduction
rule may be applied to reduce the component as long as
the component matches the pattern of the rule.

2) A component may be analyzed by use of reachability
analysis method [2], [1], [15]. This is a fundamental and
most widely applied method for analyzing TPNs. If nec-
essary and possible, we can use some individual transition
level reduction rules given in [8] to reduce the component
before reachability analysis. In case a component is very
complicated, we can also use simulation or test to obtain
the timing parameters required by its reduced net.

In the next section, we illustrate how to build the CTPN model
of a command and control system and apply the reduction rules
to simplify the analysis of the response time of the system to its
external arriving messages.
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Fig. 7. Structure of a tactic anti-air C2 system.

IV. M ODELING AND ANALYSIS OF COMMAND AND CONTROL

SYSTEMS

A command and control (C2) system is a huge and complex
integration of distributed hardware and software components.
A C2 system is a typical real-time discrete event system. Ex-
cessive delays in execution of any of its functions may increase
the damage probability, result in inefficient use of battle space,
cause too many weapons to be assigned against the same target,
and perhaps allow many targets to leak through a particular
defense zone. This section illustrates the use of compositional
TPNs to model and evaluate a tactic anti-air C2 system.

A typical structure of a tactic anti-air C2 system with two
level command and control centers is shown in Fig. 7, which
consists of a first-level command center (indicated asC2 center)
and two second-level command centers (indicated assubcen-
ters). An instance of (C2 center, subcenter) may be (division,
regiment) or (brigade, battalion). They are geographically dis-
persed due to environmental and survivability reasons, leading
to the distributed architecture of a C2 organization.

The operation of the system is described as follows.
S1) The radar group periodically sends a message con-

taining air target information to the two subcenters
at a rate that causes no queue at any stage of informa-
tion processing and communication of the system.

S2) The C2 center is composed of threeseats: two in-
telligence seatsand onedecision-making seat. The
behavior specification of this component is as fol-
lows.

a) The two intelligence seats communicate with
the decision-making seat through a common
memory.

b) The messages from two subcenters are first
copied and dispatched to the two intelligence
seats. The two actions together take one to two
time units.

c) The two intelligence seats then perform a sit-
uation assessment based on these messages
to achieve a more precise situation picture,
and then make athreatening assessmentin-
dependently for each target and send the re-

sults to the decision-making seat. The first in-
telligence seat takes three to five time units to
finish the two actions, and the second intelli-
gence seat takes three to four time units.

d) The decision-making seat works on a scheme
of battle planning(taking five to six time
units). The result is sent to the two subcenters
(taking one to two time units).

S3) The two subcenters have identical topology and
timing properties. Each subcenter is composed of
an intelligence seat and a decision-making seat.
The behavior specification of this component is as
follows.

a) The intelligence seat receives the message
from its radar group and conductstarget
discrimination, identification, and tracking,
and further conductsthreatening assessment,
then sends the result to the C2 center. It takes
two to three time units.

b) After receiving the scheme ofbattle plan-
ning from the C2 center, the subcenter fuses
it with related data in the database again
(taking one to two time units) so as to form
a detailed scheme ofweapon-to-target as-
signment(taking five to seven time units).
Furthermore, the results are sent to fire units
(taking one to two time units).

S4) The two fire units have identical topology and
timing properties. Their specification is as follows.

a) When the scheme ofweapon-to-target as-
signmentarrives from its subcenter, the unit
first conductsengagement control. To this
end, two computers concurrently compute
shoot parameters (each computer taking two
to four time units), and a third computer is
responsible to fuse these parameters to form
a complete engagement control command
(taking two to three time units).

b) Then, it conductsdamage assessment(taking
five to seven time units), and feeds back the
assessment results to its corresponding sub-
center in time (taking one to two time units).

In this case study, we focus on timing requirements on the
system. These requirements include:
R1) The system reaction time, i.e., the time delay from

an enemy intelligence message being received by
any subcenter to a fire command agaisnt the enemy
being issued by a corresponding fire unit, must be
less than or equal to 45 time units.

R2) Since the bottleneck for information processing is
often located in component C2 center, the compo-
nent is always asked to respond as soon as possible.
This is captured by the requirement that the whole
processing time for a group of messages from the
two subcenters must be less than or equal to 22 time
units.
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Fig. 8. Architecture of the CTPN model of the C2 system.

TABLE I
LEGENDS OFPARTIAL PORTS IN FIG. 8

A. Compositional TPN Model of the System

Fig. 8 shows the architecture of the CTPN model of the C2
system. The model has five components in total: a C2 center
(C2C), two subcenters (SC1, SC2), and two fire units (FU1,
FU2). Air-radar group is modeled as part of environment. Ta-
bles I and II show the legends of all nodes. Because of the sim-
ilarity, we only describe the ports and transitions for C2 center,
subcenter I, fire unit I and connections among them. Also as-
sume that the two subcenters always obtain external inputs at
the same time.

Now, we turn to the internal representation of each compo-
nent. First let us consider the C2 center. Its TPN model is shown
in Fig. 9. The messages from two subcenters are first copied and
dispatched to the two intelligence seats (t101 fires). The two in-
telligence seats are responsible for performinginformation fu-
sion and threatening assessment(t102 and t103 fire). The de-
cision-making seat works on a scheme ofbattle planning(t104
fires). The result through ports C2C.S1 and C2C.S2 is sent to
the two subcenters (T12 and T22 in two connectors fires). Note
that the required synchronization among messages from the two
subcenters has been modeled by transition t101, which does not
fire until messages from both centers have been received.

TABLE II
LEGENDS OFNODES IN CONNECTORS INFIG. 8

Fig. 9. TPN model of component C2 center. Firing times: t101:[1; 2], t102:
[3; 5], t103: [3; 4], t104: [5; 6].

Fig. 10. TPN model of component subcenter I. Firing times: t105:[2; 3], t106:
[1; 2], t107: [4; 6].

Fig. 10 shows the TPN model of component subcenter I.
The intelligence seat receives the message from its radar group
and conductstarget discrimination, identification, andtracking
(t105 fires), and further conductsthreatening assessment(t106
fires), then sends the result to the C2 center (T11 in a connector
fires). After receiving the scheme ofbattle planningfrom C2
center (SC1.RM is marked), the subcenter fuses it with related
data in the database again so as to form a detailed scheme of
weapon-to-target assignment(t107 fires). Furthermore, the re-
sults are sent to fire units (T13 in Fig. 8 fires).

As shown in Fig. 11, the TPN model of fire unit 1 is com-
posed of four transitions, five regular places and three ports. The
information of weapon-to-target assignment from subcenter I
is dispatched to the two computers (t108 fires), which concur-
rently compute shooting parameters (t109 and t110 fire). Then,
the third computer performs result fusion (t111 fires). Then, the
unit conductsdamage assessment(t112 fires), and feeds back
the assessment results to its corresponding subcenter in time
(T14 in Fig. 8 fires).
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Fig. 11. TPN model of component fire unit I. Firing times: t108:[1; 1], t109:
[2; 4], t110:[2; 4], t111: [2; 3], t112:[5; 7].

B. Analysis of the C2 System

Applying the reduction rules involves timeliness analysis of
TPNs. In [15], we present a new effective reachability analysis
technique for timeliness of TPN models. The technique is based
on a concept calledclock-stamped state class(CS-class), which
not only groups system states into compact representation of
state classes but also records the time, relative to the beginning
of system execution, when such states are reached. In particular,
a CS-class consists of three parts: 1) a marking that represents a
logical state of the modeled system; 2) a “global” firing domain
corresponding to firing intervals, whose values are counted rel-
ative to the beginning of the net’s execution, of allfirable transi-
tions in the state class; and 3) a clock stamp that corresponds to
the moment when the state class is reached with the clock value
relative to the beginning of the execution. We developed an al-
gorithm to construct the reachability tree of the TPN based on
the CS-class concept. With the reachability tree generated based
on CS-classes, we can straightforwardly compute the time span
between any two reachable CS-classes, thus the end-to-end time
delay in task execution.

It follows from specification (S1) that the system takes the
same statistical property of time to process inputs arriving at
different times. This enables us to consider only one set of in-
puts, which are generated by firing transitionIN, to verify the
system requirements. In this case, for any component to be re-
duced, no transitions in it will be enabled by the coming tokens
at its input ports until the previous input tokens have reached its
output ports, which makes our reduction rules applicable. Ap-
plying component-level reduction rules 5 and 4 to component
C2 center and fire unit I results in Fig. 12(a) and (b), respec-
tively. Applying the enumerative analysis method [15], we con-
clude

SI

SI and

SI

Thus, the requirement (R2) is verified.
Now, the reduced TPN model of the system to check require-

ment (R1) is shown in Fig. 13. Our goal is to compute the time
delay that TPN runs from the initial state to the first marking in
which places SYS.F1 and SYS.F2 are marked. Based on Fig. 13,
reachability analysis shows that it takes 31 to 42 time units for
the system to reach that state in which SYS.F1 and SYS.F2 are
marked. This implies that requirement (R1) is satisfied.

Fig. 12. (a) Reduction of component C2 center. (b) Reduction of component
fire unit I.

Fig. 13. TPN model for verifying requirement (R1).

Notice that in this example, we first reduced three compo-
nents (C2C, FU1, and FU2) into three simple TPNs, so as to use
a much simpler but equivalent model to analyze the system’s
timing property. The efficiency of the reduction depends on the
complexity of the net inside the components to be reduced. In
other words, the more complex a component, the more impor-
tant the reduction.

Note that the reduction rules [8] work on individual transi-
tions or places, and may not be applicable in some cases. For
example, no such reduction rule is applicable for any reduction
effort to component C2C.

V. CONCLUDING REMARKS

Compositional time Petri nets (CTPNs) augment the basic
Petri net model with timing constraints of time Petri nets (TPNs)
and a modular construct. CTPNs allow the decomposition of
a complex model into several simple submodels, or compo-
nents, and thus ease the modeling of complex real-time systems.
To conquer the analysis complexity of TPNs, this paper also
presented a set of component-level reduction rules for TPNs.
Each of these reduction rules transforms a TPN component to
a simple TPN while maintaining the net’s external observable
timing properties. To automate the analysis of CTPNs, we im-
plemented a software tool named CTPNa&v. The tool is written
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in C code and developed with UIM/X (professional edition),
and presently runs on Solaris.

Introduction of time into a transition or place increases both
the modeling power and the complexity of the net analysis. As
a consequence, the reduction rules presented in this paper are
only applicable to safe CTPNs. However, we believe that CTPN
models and reduction rules are still helpful in timing property
verification of complex real-time systems, as shown in Sec-
tion IV. For an unsafe bounded CTPN, we can transform it to
a safe CTPN by building the submodels of queues for possible
buffers [17]. The cost for this transformation is the increase of
the TPN size of component models. Currently, we are investi-
gating reduction rules for CTPN’s with multiple arriving tokens
to components when the worst case is of interest in verifying
real-time systems. For example, if a CTPN model is known

-bounded, we may design a worst external input scenario to
any given component, and then analyze and reduce the compo-
nent.

APPENDIX

PROOF OFTHEOREM 1

Let time Petri net be derived from time Petri net by
applying component-level reduction rule 1. We need to prove
both and

. We first prove . We will
show that if then . Because
any such can be expressed as where ,
it suffices to show that for any
where .

We break our proof into several cases.

Case 1)Port1 doesn’t get marked during.
We have assumed that the component has

no enabled transition under the initial marking
of . Thus, in this case, we can conclude that
none of the transitions in the component gets en-
abled during . Therefore, ,
which implies that because

port port .
Case 2)port1 gets marked butport2 doesn’t get marked

during .
Let be the shortest prefix of such thatport1

gets marked during , which implies that
, then we can write . Then

each state in firing schedule is reached by the
independent firings of transitions in set and
transitions in , i.e., any transition that
appears in and belongs to is concurrent
with those that appear in but do not belong to

. It results in both
and . Since we have
assumed that , so

because port port . There-
fore, .

Case 3) Bothport1 andport2 get marked once and only once
during .

Let be the shortest prefix of such that
port1 gets marked during , which implies that

, and be the shortest
prefix of such that port2 gets marked during

. Then we can write , where
since we have assumed that

port1 gets marked once and only once during. Let
be the time of and be the time of

. Then, from preconditions 1) and 2)
of this rule, represents the time delay of
the message transfer betweenport1 andport2, i.e.,

SI port port

SI port port , and
SI port port . Since SI

SI port port SI

SI , and SI .
Also, it follows from and

port port that
and is enabled under state . Hence,
we have , and
again since port port ,
the state is fol-
lowed by . It follows from
that ,
or , or

.
Case 4) General case.

Suppose thatport1 gets marked times andport2 gets
marked times during . It follows from precondition (2) of
this rule that either or . We have proven the
cases in which , and .
By the recursive use of the proofs for Case 2 and Case 3, we
can prove that for any schedule in which
takes any positive integral value.

Now we prove . Similarly, we
will show that for any holds
where .

We also break our proof in several cases.

Case 1)Port1 does not get marked during.
Because only whenport1 gets marked canfire,

so in this case, we can conclude thatnever fires
during . Therefore, , which im-
plies that because

port port .
Case 2)Port1 gets marked butport2 doesn’t during .

The assumption thatport2 doesn’t get marked im-
plies that never fires during . So, as true in Case
1, we also have .

Case 3)Port2 gets marked once and only once during.
Let be the shortest prefix of such that

port1 gets marked during , which implies
that , and be the shortest
prefix of such thatport2 gets marked during

. Then, we can write , where
since we have assumed that

port2 gets marked only once during, which im-
plies that only fires once. Let be the time of

and the time of . Then,
from the structure of the reduced net, we know
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that represents the firing time interval
of , i.e., SI

SI , and SI .
Since SI SI port port , we have

SI port port

SI port port , and
SI port port . Also, it follows from

and port port

that and enables at least one
of the transitions in set . Hence, we have

, where is any
firing schedule (segment) in starting from
port1 being marked and ending inport2 being
marked and with only transitions in included.
Again, since port port ,
the state is fol-
lowed by . It follows from

that , or
, or

.
Case 4) General case.

Suppose thatport1 gets marked times andport2 gets
marked times during . It follows from the structure of the
reduced net that either or . We have proved
the cases in which , and . By the
recursive use of the proofs for Case 2 and Case 3, we can prove
that for any schedule in which takes any
positive integral value.
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